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Abstract

el
In this paper the coupled mode equations governing the propagation of TE

waves in a tapered circular waveguide are derived.

The derivation is based on the

assumption that an elementary section of the taper can be thought of as an

elementary truncated cone.

This approach is superior to the cylindrical mode

representation in that it eliminates"the singularity in the coupled mode equations
for the modal amplitudes at "cut-off > and also leads to a faster converging

expansion.
Introduction

In the course of developing a milli-
meter waveguide transmission system,
transitions between two circular cylindrical
waveguldes of different radii are used
frequently. These tapered sections are
designed so as to transmit the TE2., mode
freely, at the same time keeping %%e excited
TES, mode level as low as possible. The
formulae used to design the tapers at the
present time are based on an approximation
which treats an elementary section of the
taper as an elementary section of a uniform
cylindrical wavegulde. Under this formula-
tion the TE2, mode could have a cut-off
point, undef“certain conditions, somewhere
inside the taper which introduces diffi-
culties, in the form of singularities, in
the analysis and design of these components.
Even though in practice this difficulty is
bypassed by designing the tapers at high
enough  frequencies, so that both modes
propagate at all sections, it is desirable
to be able to analyze them at lower
frequencies. The spherical mode represen-
tation has the advantage that the transition
between the propagating and the evanescent
regimes of the TE°2 mode is made in a con-
tlnuous manner ang therefore can be used to
investigate the performance of tapers at all
frequencies.

Mode conversion in a tapered wavegulde
capable of multimode propagation has been
investigated by a number of authors. The
method employed is to reduce the boundary
value problem to a set of coupled differen-
tial equations (telegraphist's equations).
This is accomplished by expressing the
electromagnetic field at any cross section
in terms of an infinite set of cylindrical
basis functions characteristic of a_unlform
waveguide of the same cross sectionl-

These basis functions, do not, in general
satisfy the boundary condition individually
and hence the infinite series representing
the total field converges very slowly, or
may even fail to converge, In practice one
must truncate the infinite series after two
or three terms and so the slow convergence
becomes a real problem. This problem has
been recognized in the past and efforts have

An iterative method of solving these equations
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is also outlined.

been made to overcome this difficulty.

Unger~ formulates the problem in a "natural"
coordinate system but this method falls when
the curvature of the taper profile becomes
negative. A satisfactory method of improv-
ing the convergence of the telegraphigtés
equation has been formulated by Bahar-?’ .
In his analysis the nonuniform waveguide is
considered to consist of an infinite number
of elementary sections. In each of these
elementary sections the field 1s expressed
in terms of an infinite complete set of
"local" basis functilions that individually
satlisfy Maxwell's equations and the exact
boundary conditions. The differential
scattering coefficients for the junction
between two adjacent elementary sectlons are
obtained by solving the boundary value
problem and in the 1limit as the size of
these sections goes to zero these
coefficients lead to the telegraphist's
equations.

Consider a tapered section of length L,
which connects two uniform circular wave-
guides of radili a, and a, (a, < a2) (FIG. 1).
A TES wave propagating in t%e wavVeguide of
radius a, is incident on the taper waveguide
combinatfon. It 1s desired to compute the
levels of the various TE? modes excited in
the two waveguildes. Assufle the tapered
section to be made up of a very large number
of elementary conlcal sectlions. Let A, B
denote two adjacent elementary conical
sections at z and z + dz, respectively,
(FIG. 2). The fields in A and B can be
represented in terms of spherical modes
with origins at z' and z' + dz', regpec-
tively. Specifically, the local TE field
components can be written in terms 8? a
scalar potential M such that

M~ h\()j) (kr) P (cos 6) (1)

where nd) (kr) = (/2 kr)l/2 H<i)1 (kr),
H deno%ing the Hankel function? v'é%kes on
a’discrete set of values.{v_}, p = 1,2,3,.
which are the roots of Pv (Ros Y) =0, ¥



being the local cone angle and r and 6§ are
the spherical coordinates with origins at
tge téps of the local conical sections. Let
a_, a_ denote the amplitudes of the forward
propagating TES  waves (in the + z seﬂse)Bin
sections A and B, respectively, and b_, b
denote the amplitudes of the correspoﬁding
backward waves (FIG. 3). Ege diggerenggal
scﬁ&tering coefficients ds__, dsnm’ ds o and
dsnm are defined by the foETowing equa%lons.

B _ % BA, _A
as =) (6__ + ds_ ) a
n m=1 nm nm m
© (2)
7 asP el
m=1 n
o = T (s + ashB) pP
m=1 1 B
(3)
(o]
+ Iaspn e
m=1

The next step 1s to match the tangential
fields in Secgions A and B. This is done on
the surface S~ (FIG. 3) and requires an
analytic continuation of the filelds in
section A. It is felt that this procedure
ii justigied since in the 1limit ag dz -

S™ and S° colncide. Matching of and H
leads to explicit expressions for %he
differential scattering coeffilicients in

t

terms of the geometry of the tapered section.

To convert equations (2) and (3) into a set
of coupled differential equations with z as
the independent variable we proceed as
follows.

Consider the profile of the taper as
shown in FIG. 1. For a given z we can draw
a line perpendicular to the z axis which
will intersect the profile at some point P.
The tangent to the profile at P will inter-
sect the axis at some point z'. If we
imagine a spherical coordinate system with
origin at z' then we defineea_{z) and b_(z)
as the amplitudes of the forw%rd and
backward TE n waves, respectively, on the
spherical gurface passing through P and
centerﬁd ag z'A Accogding to this defini-
tion a”, a_, b_ and b_ are related to a_(z)
and bn?z) Ey the rela®ions n

da

aﬁ - aA = —E% + j(S;/cos w)a?]dz, )
db

bﬁ - bﬁ = na% - j(B;/cos w)b?]dz. (5)

78

Substitution of equations (2), (3) into (3),
(1) leads to the following coupled mode
equations.

da
+
_a% v, =y ) (6)
db
—e - dv, = g, (7)
where
BA
ds
+ _ + . nn
by = (B /cos ¥) + 5 —o= (8)
_ _ dsﬁg
v, = (Bn/cos Y) + ] 3z » (9)
ot dsg]’}}\l
fn(z) = mzl dz am
B (10)
nm
* mzl dz bm °
o dsﬁﬁ
gn(Z) = - mzl dz “m
1
! dsAB ()
nm
- mzl iz Pm .

oo !

and 2 means that the m=n term 1s excluded
m=1

from the summation.

The coupled mode equations (6), (7)
along with the boundary conditions at z=0
and z=L lead to the following integral

equations.
Z Z
a (z) = exp '—-j[ w;(x)dx [ £ (x)
0 0
X (12)
. exp 3[ w;(x')dx’ ax + a_(0)},
0
z o
b (z) = exp jI P (x)dx g, (x)
L L (13)
X
*+ exp {-J I w;(x’)dx'dx + bn(L)
L



For a well designed taper the amplitudes
b. are negligible in comparison with the
a%plitudes a_. Under this approximation
it is feasib®e to solve Equations (12), (13)
by the method of successive approximation.
For example, if a TEO mode of amplitude
a,(0) is incident on the taper at z=0 we
obtain in the zeroth order approximation

(0)

Z
a;%) (2) = a,(0) exp —jJO VI ax |, (aw)

all the other amplitudes being zero.

Equation (14) t? compute f%rﬁt order

expressions e(1 (z) and g 1) (2) via
Equations (10%, (11) we ob®ain in the first
order

Using

n

z z
a(l> (z) = exp —jj w+(x)dx J f(l)(x)
o - o™

X (15)
+
exp’jjo vy (x')dx'} dx + al(o) 5.1 >

Z Z
bé1>(2) = exp JJO b (x)dx IL gél)(X)

" (16)
exp —jJ w;(x')dx' dx
L

This process may be continued until
convergence 1is obtained.

To compute the differential scattering
coefficients numerically, it is necessary
to compute Legendre functions of order Vo

— Vd

1 s

o

o
~

b
|
|

z 7'+d7

N

Adjacent Elementary Conical
Sections

Forward and Backward Waves

FIG. 3.

and Hankel functions of order v_ + 1/2. It
can be shown that when the 1ocaT cone angle
v 1s small v_ = (k_/¢) approximately where
km denote the roots of the Bessel function
J Thus, we see that v_ is very large for
vEry small local cone angles. The Hankel
functions of large orders and arguments can
be computed from thelr uniform asymptotic
expansions and the Legendre function by
numerical quadrature.
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