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Abstract

In this paper the coupled mode equations governing the propagation of TE~m
waves in a tapered circular waveguide are derived. The derivation is based on the
assumption that an elementary section of the taper can be thought of as an
elementary truncated cone. This approach is superior to the cylindrical mode
representation in that it eliminates,,the singularity in the coupled mode equations
for the modal amplitudes at “cut-off ~ and also leads to a faster converging
expansion. An iterative method of solving

Introduction

In the course of developing a milli-
meter waveguide transmission system,
transitions between two circular cylindrical
waveguides of different radii are used
frequently. These tapered sections are
designed so as to transmit the TEO
freely, at the same time keeping ?~em~~~ited

‘E;2
mode level as low as possible.

formulae used to design the tapers at the
present time are based on an approximation
which treats an elementary section of the
taper as an elementary section of a uniform
cylindrical waveguide. Under this formula-

‘i:n ‘he ‘E;2
mode could have a cut-off

point, under certain conditions, somewhere
inside the taper which introduces diffi–
culties , in the form of singularities, in
the analysis and design of these components.
Even though in practice this difficulty is
bypassed by designing the tapers at high
enough, frequencies, so that both modes
propagate at all sections, it is desirable
to be able to analyze them at lower
frequencies . The spherical mode represen-
tation has the advantage that the transition
between the propagating and the evanescent

mode is made in a con-r:gimes of ‘he ‘E~2therefore Can be used to

tlnuous manner an
investigate the performance of tapers at all
frequencies .

Mode conversion in a tapered waveguide
capable of multimode propagation has been
investigated by a number of authors. The
method employed is to reduce the boundary
value problem to a set of coupled differen–
tial equations (telegraphist’s equations).
This is accomplished by expressing the
electromagnetic field at any cross section
in terms of an infinite set of cylindrical
basis functions characteristic of a uniform
waveguide of the same cross sectionl-3 .
These basis functions, do not, in general
satisfy the boundary condition individually
and hence the infinite series representing
the total field converges very slowly, or
may even fail to converge, In practice one
must truncate the infinite series after two
or three terms and so the slow convergence
becomes a real problem. This problem has
been recognized in the past and efforts have

these equations !LS also outlined.

been made to overcome this difficulty.
Unger4 formulates the problem in a “natural”
coordinate system but this method fails when
the curvature of the taper profile becomes
negative. A satisfactory method of improv-
ing the convergence of the telegraphi$t~s
equation has been formulated by Bahar ‘ .
In his analysis the nonuniform waveguide is
considered to consist of an infinite number
of elementary sections. In each of these
elementary sections the field is expressed
in terms of an infinite complete set of’
“local” basis functions that individually
satisfy Maxwellts equations and the exac~
boundary conditions. The differential
scattering coe~ents for the .Junction
between t;o adjacent elementary ;ections are
obtained by solving the boundary value
problem and in the limit as the size of
these sections goes to zero these
coefficients lead to the telegraphists
equations.

Consider a tapered section of length L,
which connects two uniform circular wave-
guides of radii al and a2 (a < a2) (FIG. 1).
A TEO Awave propagating In t e waveguide of
~adigg a

i
is incident on the taper waveguide

combinat on. It is desired to compute the
levels of the various TE~ modes excited in
the two waveguides. Assu8e the tapered
section to be made up of a very large number
of elementary conical sections. Let A, B
denote two adjacent elementary conical
sections at z and z + dz, respectively,
(FIG. 2). The fields in A and B can be
represented in terms of spherical modes
with origins at z! and z? + dzy , respec-
tively. Specifically, the local TE
components can be written in terms V/J :ield
scalar potential M such that

M N h$J) (kr) Pv(cos 13) . (1)

where h(j) (kr) = (Tr/2 kr) 1/2 ~(j)

Hv deno~ing the Hankel function :+vl”&k:!%
a discrete set. of values {v }, p = 1,2,3, . . .
which are the roots of P; (80s ~) = O, $
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being the local cone angle and r and 9 are
the spherical coordinates with origins at
t~e t~ps of the local conical sections. Let
a am denote the amplitudes of the forward
p%pagating TE~

‘aves ‘in ‘he + z ‘eflse)Bin
sections A and ~, respectively, and bm, bm
denote the amplitudes of the corresponding
backward waves (FIG. 3). ~Qe di~~eren

, dskhal
sc~~tering coefficients ds , ds and
dsnm are defined by the fo!lTowin~mequaWons.

(2)

(3)

The next step is to match the tangential
fields in Sec&,ions A and B. This is done on
the surface S (FIG. 3) and requires an
analytic continuation of the fields in
section A. It is felt that this procedure
i~ justi~ied since in the limit a
S and S coincide. lWatching of ~i~~; $,
leads to explicit expressions for
differential scattering coefficients in
terms of the geometry of the tapered section.
To convert equations (2) and (3) into a set
of coupled differential equations with z as
the independent variable we proceed as
follows.

Consider the profile of the taper as
shown in FIG. 1. For a given z we can draw
a line perpendicular to the z axis which
will intersect the profile at some point p.
The tangent to the profile at P will inter-
sect the axis at some point z’ . If we
imagine a spherical coordinate system with
origin at z’ then we defineea (z) and bn(z)
as the amplitudes of the forw%?d and
backward TE waves, respectively, on the
spherical ~~rface passing through P and
center~d a~ Z’A Accogding to this defini-
tiona, a,bandb are related to an(z)
and bn?z) @y t~e relations

[

aB _ aA ‘an 1=~+j(6~/cos ~)an dz,
n n (4)

bB

[

db

n
J

- b: = --#- j(B~/cos $)bn dz. (5)

Substitution of equations (2), (3) into (3),
(4) leads to the following coupled mode
equations.

db n
—_

dz j$~ = gn .

d~BA
nn

x’

dsAB
nn

r’

>

ds AA

gn(z) = - y’ _M=l d;mam

co ‘ dsAB

-~~bm.
m. 1

(6)

(7)

(8)

(9)

(10)

(11)

and ~’means that the m=n term is excluded
m. 1

from the summation.

The coupled mode equations (6), (7)
along with the boundary conditions at z=O
and z=L lead to the following integral
equations.

an(z)

bn(z)

= exp

. exp

= ex~

● exp

I
z

j 4;(X

I L
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For a well designed taper the amplitudes
b are negligible in comparison with the
afiplitudes a . Under this approximation
it is feasib?e to solve Equations (12), (13)
by the method of successive approximation.

mode of amplitude
~~i)~x~p~~~i~~n~ %“+he taper at z=O we

&o tain in the zeroth order approximation

(o) (z) = al(0) exP
al /-JrJ(x) ‘xl ’14)

all the other amplitudes being zero. Using
Equation (14) t .ompute ‘~r?t(~~d~~a

expressions f(l? (z) and g 1
Equations (109, (11) we ob~ain in the first
order

I m)dxl~f~’)(x)
a(l) (z) = exp -j

n

lJ

x

I 1
(15)

exp j $: (x’)dx’ dx + al(0) &nl ,
0

II i@dx\[~#)(x)b(l)(z) = exp j
n

expl-jt~(x)dxtldx] ~

(16)

This process may be continued until
convergence is obtained.

TO compute the differential scattering
coefficients numerically, it is necessary
to compute Legendre functions of order Vm

B
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FIG. 2. Adjacent Elementary Conical
Secti2ns
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and Hankel functions of order v + 1/2. It

can be shown that when the locay cone angle
~ is small Vm = (k lv) approximately where
km denote the root: of the Bessel function

‘1”
Thus, we see that v is very large for

very small local cone angles. The Hankel
functions of large orders and arguments can
be computed from their uniform asymptotic
expansions and the Legendre function by
numerical quadrature.
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FIG. 1. Tapered Section Joining TWO
Uniform Waveguides

FIG. 3. Forward and Backward Waves
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